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Our goal throughout this expository note is to understand the connections among the Jordan Canon-

ical Form, the Rational Canonical Form, and the Smith Normal Form of a linear operator over a

finite-dimensional vector space (or equivalently, square matrix with entries in a field). Previously,

we discussed the Fundamental Theorem of Finitely Generated Modules over a Principal Ideal Do-

main (PID). Put in practice, this theorem allows us to decompose any finite-dimensional vector

space over a field k into a direct sum of cyclic subspaces with respect to a linear operator. Before

we implement this powerful tool, we should understand some fundamentals of modules.

The Basics of Module Theory

We will assume that R is a commutative unital ring with multiplicative identity 1R. We say an

abelian group (M,+) is an R-module if there exists a group action · : R×M →M such that

(i.) r · (m+ n) = r ·m+ r · n for all elements r ∈ R and m,n ∈M and

(ii.) (r + s) ·m = r ·m+ s ·m for all elements r, s ∈ R and m ∈M.

Recall that · : R×M →M is a group action of R on M if and only if

(iii.) r · (s ·m) = (rs) ·m for all elements r, s ∈ R and m ∈M and

(iv.) 1R ·m = m for all elements m ∈M.

Example 1. Every abelian group G is a Z-module with respect to the group action

n · g = g + g + · · ·+ g︸ ︷︷ ︸
n summands

.

Example 2. Every commutative unital ring R is an R-module: the action is multiplication in R.

Further, any subring of R is an R-module, hence every ideal I of R is an R-module.

We say that an R-module M is finitely generated if there exist elements x1, . . . , xn ∈ M such

that for any element m ∈M, there exist elements a1, . . . , an ∈ R with m = a1 · x1 + · · ·+ an · xn.

Example 2, Cont’d. The Z-module Z is finitely generated by 1 because every non-negative integer

n can be written as n · 1 = 1 + 1 + · · · + 1 with n summands. Of course, if n is negative, then we

have that n · 1 = (−1) + (−1) + · · · + (−1) with n summands. On the other hand, by Bézout’s

Theorem, for any collection of integers x1, . . . , xn such that gcd(x1, . . . , xn) = 1, there exist integers

a1, . . . , an such that a1x1 + · · ·+ anxn = 1. Thus, Z is generated by x1, . . . , xn as a Z-module.
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Our previous example illustrates that even though a finitely generated R-module always admits a

finite set of generators, the number of generators is not necessarily unique. Going forward, we will

not concern ourselves with this predicament when dealing with finitely generated modules.

The k[x]-Module Structure of a k-Vector Space

Crucially, our next objective is to establish that every (finite-dimensional) vector space is a (finitely

generated) module over a principal ideal domain. Toward this end, let us assume that k is a field

and that V is a (finite-dimensional) k-vector space with a linear operator T : V → V. Recall that

the univariate polynomial ring k[x] is a Euclidean domain (the norm of a polynomial is its degree)

and hence a principal ideal domain. Consider the group action · : k[x]× V → V defined by

f(x) · v = f(T )(v).

Composition and addition of linear operators behaves as desired, so this action turns V into a

k[x]-module. In the case that V is finite-dimensional over k, there exist vectors v1, . . . , vn such that

for every vector v ∈ V, there exist unique scalars a1, . . . , an ∈ k such that

v = a1v1 + · · ·+ anvn = a1 · v1 + · · ·+ an · vn,

where ai · vi denotes the action of the constant polynomial ai on vi. Consequently, V is finitely

generated as a module over the principal ideal domain k[x]. By the Fundamental Theorem of

Finitely Generated Modules over a Principal Ideal Domain, we conclude that V can be written as

V ∼= k[x]⊕m ⊕ k[x]

(p1(x))
⊕ · · · ⊕ k[x]

(pn(x))

for some integers m ≥ 0 and n ≥ 1 and some monic polynomials p1(x), . . . , pn(x) ∈ k[x].

By the Cayley-Hamilton Theorem, on the other hand, there exist scalars c1, . . . , cr ∈ k such

that T r + c1T
r−1 + · · ·+ crI is the zero operator. Consequently, there exists a nonzero polynomial

f(x) = xr + c1x
r−1 + · · ·+ cr such that for every vector v ∈ V, we have that f(x) · v = f(T )(v) = 0.

We conclude that every element of V is torsion so that V is a torsion k[x]-module. Particularly,

V ∼=
n⊕
i=1

k[x]

(pi(x))
.

Further, the Fundamental Theorem of Finitely Generated Modules over a Principal Ideal Domain

guarantees that the monic polynomials satisfy p1(x) | p2(x) | · · · | pn(x). We refer to these poly-

nomials as the invariant factors of V with respect to T (or simply the invariant factors of T ).

Before we proceed, we advise the reader to review these notes on the Smith Normal Form.

The Rational Canonical Form

Using the invariant factor decomposition of a finite-dimensional k-vector space V as a k[x]-module

with respect to a linear operator T : V → V, we may deduce that every linear operator T : V → V

is similar to a finite direct sum of companion matrices corresponding to its invariant factors.
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Definition 1. Consider a monic polynomial f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0 with coefficients

in a field k. We define the companion matrix of f(x) to be the d× d matrix

Cf(x) =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
...

...
...

. . .
...

...

0 0 0 · · · 1 −ad−1


.

Observe that the quotient ring k[x]/(f(x)) can be viewed as a d-dimensional k-vector space with

standard ordered basis {1+(f(x)), x+(f(x)), . . . , xd−1+(f(x))}. On the other hand, multiplication

by x is a linear operator on k[x]/(f(x)) that acts on the basis vectors of k[x]/f(x) by

x · [xi + (f(x))] = xi+1 + (f(x))

and xd+(f(x)) = −a0−a1x−· · ·−ad−1xd−1 +(f(x)), hence the companion matrix Cf(x) is nothing

more than the matrix that represents multiplication by x with respect to the standard ordered basis

of k[x]/(f(x)). Considering that V is a direct sum of such objects by the previous section, we may

take a basis Bi corresponding to each cyclic factor k[x]/(pi(x)) of V as a k[x]-module. By definition,

we have that T (v) = x · v for each vector v, hence the matrix of T with respect to the basis Bi is

none other than the companion matrix Cpi(x). Ultimately, we have the following.

Theorem 1. Let V be an n-dimensional k-vector space. Let T be a linear operator on V. Consider

V as a finitely generated k[x]-module via the action f(x) · v = f(T )(v). If the invariant factors of V

with respect to T are p1(x) | p2(x) | · · · | pr(x), then the matrix of T with respect to the standard

basis of V is similar to the direct sum of the companion matrices C1, . . . , Cr corresponding to the

polynomials p1(x), . . . , pr(x). Put another way, there exists an invertible matrix n × n matrix P

with coefficients in k such that the matrix A of T with respect to the standard basis of V satisfies

A = P (C1 ⊕ C2 ⊕ · · · ⊕ Cr)P−1.

We refer to RCF(A) = ⊕ri=1Ci as the Rational Canonical Form of T (w.r.t. its invariant factors).

Consequently, in order to compute the Rational Canonical Form of T (with respect to its invariant

factors), it suffices to compute the invariant factors of T. Let A be the matrix of T with respect to

the basis B = B1 ∪B2 ∪ · · · ∪Br of V corresponding to the invariant factor decomposition

V ∼=
r⊕
i=1

k[x]

(pi(x))

of V. Let I be the identity matrix. Observe that xI −A is an n× n matrix with coefficients in the

principal ideal domain k[x]. By Theorem 2, the Smith Normal Form of xI − A is given by

SNF(xI − A) =
(
1
)
⊕ · · · ⊕

(
1
)︸ ︷︷ ︸

n−r summands

⊕
r⊕
i=1

(
pi(x)

)
,

where p1(x) | p2(x) | · · · | pr(x) are the invariant factors of V with respect to T.

3

http://people.ku.edu/~d982b169/algebraqualstudygroup_Finitely%20Generated%20Abelian%20Groups%20and%20the%20Smith%20Normal%20Form.pdf


Proposition 1. Let V be an n-dimensional k-vector space. Let T be a linear operator on V

represented by the matrix A. Let I be the n× n identity matrix. The following statements hold.

(1.) The invariant factors of V with respect to T (or simply the invariant factors of T ) are the

non-constant polynomials appearing along the diagonal of the Smith Normal Form of xI −A.

(2.) The largest invariant factor of T is the minimal polynomial of T.

(3.) The product of all invariant factors of T is the characteristic polynomial of T.

Proof. By the previous paragraph, statement (1.) holds. Considering that p1(x) | p2(x) | · · · | pr(x),

it follows that pr(x) annihilates each cyclic factor k[x]/(pi(x)) of V, hence pr(x) annihilates V. By

definition, the minimal polynomial of V divides pr(x). Conversely, pr(x) is a monic polynomial and

k[x] is a principal ideal domain, so the minimal polynomial of V must be pr(x), and statement (2.)

holds. Last, the Smith Normal Form of xI − A is similar to xI − A, so we have that

det(xI − A) = det(SNF(xI − A)) = p1(x)p2(x) · · · pr(x).

Considering that the characteristic polynomial of T is given by det(xI−A), statement (3.) holds.

Combined, Theorem 1 and Proposition 1 above allow us to deduce the invariant factors, minimal

polynomial, characteristic polynomial, and Rational Canonical Form of a linear operator.

Example 3. Let V be the C-vector space of univariate polynomials of degree ≤ 3. Let T : V → V

denote the linear operator T (f(x)) = f(x) + f ′′(x). Compute the Rational Canonical Form of T.

Proof. We refer the reader to the proof as outlined in these notes.

Example 4. (Exercise 12.2.9, Dummit and Foote) Let k be a field, and let c be an element of

k. Compute the invariant factors, minimal polynomial, characteristic polynomial, and Rational

Canonical Form of the linear operator T : k⊕3 → k⊕3 represented by the following matrix.

A =

 c 0 −1

0 c 1

−1 1 c


Proof. By Theorem 1 and Proposition 1, it suffices to find the Smith Normal Form of xI − A.

Occasionally, it behooves us to keep track of additional information relating to the Rational Canon-

ical Form, e.g., the change-of-basis matrix P such that P−1AP = RCF(A). We accomplish this by

carrying out the recipe outlined in Section 12.2 of Dummit and Foote as follows.

Proposition 2. (Finding the Change-of-Basis Matrix for the Rational Canonical Form) Let k be a

field. Let A be an n× n matrix representing a linear operator T : k⊕n → k⊕n. The change-of-basis

matrix P such that P−1AP = RCF(A) can be found as follows.

(i.) Compute the Smith Normal Form of xI −A by using elementary row and column operations

to obtain a diagonal matrix with monic polynomials p1(x) | p2(x) | · · · | pn(x). Be sure to

keep track of all row operations Ri ↔ Rj and αRi +Rj 7→ Rj.
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(ii.) Begin with the standard basis e1, . . . , en of k⊕n. Using the same order as the elementary

row operations were performed, employ the inverse operation to the columns of the matrix(
e1 · · · en

)
, where the vectors ei are taken to be the columns. Explicitly, if the row opera-

tionRi ↔ Rj was performed, then perform the column operation Ci ↔ Cj; if the row operation

αRi +Rj 7→ Rj was performed, then perform the column operations αCj − Ci 7→ Ci.

(iii.) If step (ii.) is completed correctly, the transformed matrix
(
e1 · · · en

)
should consist of

standard basis vectors and polynomials acting on them. Use the action f(x) · ei = f(T )(ei)

to write each column as a linear combination of the standard basis vectors e1, . . . , en.

(iv.) The ith column of the transformed matrix
(
e1 · · · en

)
corresponds to the ith entry of the

Smith Normal Form of xI −A and so to the ith cyclic factor k[x]/(pi(x)) of V. Consequently,

the ith column vector of the transformed matrix corresponds to a k[x]-module generator of

V. If the ith column of the transformed matrix is 0, then pi(x) = 1 (and vice-versa), so the

cyclic factor k[x]/(pi(x)) vanishes. If the degree of pi(x) is one, then the cyclic factor of V

corresponding to k[x]/(pi(x)) has only one generator, and it is the ith column vector. If the

degree of pi(x) is di ≥ 2, then the cyclic factor of V corresponding to k[x]/(pi(x)) has di
generators, and they are the column vectors vi, T (vi), . . . , T

di−1(vi).

(v.) The columns of the change-of-basis matrix P correspond to the generators of the cyclic factors

found in step (iv.). Explicitly, if the degree of pi(x) is 1, then the ith column of the matrix P

is the generator of the ith cyclic factor of V. If there is more than one generator, then write

the columns in left-to-right order according to the vectors vi, T (vi), . . . , T
di−1(vi).

Example 3, Cont’d. Recall that the matrix of T with respect to B = (1, x, x2, x3) is given by

A =


1 0 2 0

0 1 0 6

0 0 1 0

0 0 0 1

.
Further, we found that (x− 1)2 and (x− 1)2 are the elementary divisors of A so that

RCF(A) = C(x−1)2 ⊕ C(x−1)2 =

(
0 −1

1 2

)
⊕
(

0 −1

1 2

)
=


0 −1 0 0

1 2 0 0

0 0 0 −1

0 0 1 2

.
We employed the following row operations in succession to obtain SNF(xI − A).

(1.) 1
2
(x− 1)R1 +R3 7→ R3

(2.) 1
6
(x− 1)R2 +R4 7→ R4

Consequently, we must transform the 4× 4 identity matrix accordingly.(
e1 e2 e3 e4

) 1
2
(x−1)C3−C1 7→C1−−−−−−−−−−−→

(
1
2
(x− 1) · e3 − e1 e2 e3 e4

)
1
6
(x−1)C4−C2 7→C2−−−−−−−−−−−→

(
1
2
(x− 1) · e3 − e1

1
6
(x− 1) · e4 − e2 e3 e4

)
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By definition, we have that f(x) · v = f(A)v. Consequently, we find that

1

2
(x− 1) · e3 − e1 =

1

2
(A− I)e3 − e1 =

1

2
Ae3 −

1

2
e3 − e1 = 0 and

1

6
(x− 1) · e4 − e2 =

1

6
(A− I)e4 − e2 =

1

6
Ae4 −

1

6
e4 − e2 = 0.

We conclude that the transformed matrix from above is
(
0 0 e3 e4

)
, hence our k[x]-module

generators for V are (x− 1)2 and (x− 1)2. Consequently, the columns of the matrix P from left to

right are e3, Ae3, e4, and Ae4. Explicitly, we find the following.

P =


0 2 0 0

0 0 0 6

1 1 0 0

0 0 1 1


Using WolframAlpha (for example), one can verify that P−1AP = RCF(A).

Example 4, Cont’d. Find the change-of-basis matrix P such that P−1AP = RCF(A).

The Jordan Canonical Form

We have just established that for any finite-dimensional k-vector space V with a linear operator

T : V → V, there exists a unique block-diagonal matrix — called the Rational Canonical Form

(with respect to the invariant factors) of T — that is similar to the matrix of T with respect to

the standard ordered basis of V. Explicitly, the Rational Canonical Form (w.r.t. invariant factors)

is the direct sum of the companion matrices of the invariant factors of T. Consequently, there will

generally be nonzero entries both above and below the main diagonal of this matrix.

One natural question to ask is if there is a refinement of the Rational Canonical Form for which

the only nonzero entries are on or above the main diagonal. Our immediate task is to investigate

this question and answer it in the affirmative when k is an algebraically closed field.

Let p1(x) | p2(x) | · · · | pr(x) denote the invariant factors of T. Each of these is by definition a

polynomial of degree≥ 1, hence we may write pi(x) as a product of powers of irreducible polynomials

pi(x) = qi1(x)ei1 · · · qik(x)eik . We refer to qij(x)eij as an elementary divisor of T.

Example 3, Cont’d. Observe that the invariant factors of T are (x − 1)2 and (x − 1)2. Conse-

quently, these are precisely the elementary divisors of T.

Example 5. Let k be a field — not necessarily algebraically closed. Suppose that T is a k-linear

operator with invariant factors x2−4 and (x2−4)(x2 +1). Considering that x2−4 = (x−2)(x+2),

it follows that the elementary divisors of T are x− 2, x+ 2, x− 2, x+ 2, and x2 + 1: the repetition

of x− 2 and x+ 2 comes from the fact that x2 − 4 divides both of the invariant factors of T.

Proposition 3. Let V be an n-dimensional k-vector space. Let T be a linear operator on V

represented by the matrix A. Let I be the n× n identity matrix. The following statements hold.
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(1.) The elementary divisors of V with respect to T (or simply the elementary divisors of T ) are

the largest powers of the irreducible factors of the non-constant polynomials appearing along

the diagonal of the Smith Normal Form of xI − A.

(2.) The elementary divisors all divide the minimal polynomial of T. In particular, the minimal

polynomial gives rise to all of the elementary divisors — possibly without repetition.

(3.) The product of all elementary divisors of T is the characteristic polynomial of T.

(4.) If k is algebraically closed, then each elementary divisor is a power of a linear polynomial.

Example 4, Cont’d. Compute the elementary divisors of A; then, find the Rational Canonical

Form of A with respect to the elementary divisors of A, i.e., RCF(A) = ⊕si=1Ci, where Ci is the

companion matrix of the ith elementary divisor of A. Explain how (and why) this differs from the

Rational Canonical Form of A with respect to the invariant factors of A.

Crucially, if k is an algebraically closed field, then each elementary divisor of T is of the form

(x− α)d for some element α ∈ k and some integer d ≥ 1.

Definition 2. Consider the monic polynomial fα(x) = (x− α)d for some element α ∈ k and some

integer d ≥ 1. We define the Jordan block corresponding to (x− α)d to be the d× d matrix

Jfα(x) =



α 1 0 0 · · · 0

0 α 1 0 · · · 0

0 0 α 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 0
. . . 1

0 0 0 0 · · · α


.

Put another way, we have that Jfα(x) = αI + S, where I is the d × d identity matrix and S is the

d× d matrix with 1s on the superdiagonal and 0s elsewhere.

Theorem 2. Let k be an algebraically closed field. Let V be an n-dimensional k-vector space.

Let T be a linear operator on V. Consider V as a finitely generated k[x]-module via the action

f(x) · v = f(T )(v). If the elementary divisors of V with respect to T are q1(x), . . . , qs(x), then

the Jordan blocks J1, . . . , Js corresponding to the polynomials q1(x), . . . , qs(x) exist. Further, the

matrix of T with respect to the standard basis of V is similar to the direct sum of the Jordan blocks

J1, . . . , Js. Put another way, there exists an invertible matrix n× n matrix P with coefficients in k

such that the matrix A of T with respect to the standard basis of V satisfies A = P (J1⊕· · ·⊕Js)P−1.
We refer to the block-diagonal matrix JCF(A) = ⊕si=1Ji as the Jordan Canonical Form of T.

Example 3, Cont’d. (Q5, January 2018) Compute the Jordan Canonical Form of T.

Example 4, Cont’d. Compute the Jordan Canonical Form of A. Explain how (and why) it differs

from both Rational Canonical Forms of A.
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Proposition 4. (Finding the Change-of-Basis Matrix for the Jordan Canonical Form) Let k be an

algebraically closed field. Let A be an n× n matrix representing a linear operator T : k⊕n → k⊕n.

The change-of-basis matrix P such that P−1AP = JCF(A) can be found as follows.

(i.) Compute the Smith Normal Form of xI −A by using elementary row and column operations

to obtain a diagonal matrix with monic polynomials p1(x) | p2(x) | · · · | pn(x). Be sure to

keep track of all row operations Ri ↔ Rj and αRi +Rj 7→ Rj.

(ii.) Begin with the standard basis e1, . . . , en of k⊕n. Using the same order as the elementary

row operations were performed, employ the inverse operation to the columns of the matrix(
e1 · · · en

)
, where the vectors ei are taken to be the columns. Explicitly, if the row opera-

tionRi ↔ Rj was performed, then perform the column operation Ci ↔ Cj; if the row operation

αRi +Rj 7→ Rj was performed, then perform the column operations αCj − Ci 7→ Ci.

(iii.) If step (ii.) is completed correctly, the transformed matrix
(
e1 · · · en

)
should consist of

standard basis vectors and polynomials acting on them. Use the action f(x) · ei = f(T )(ei)

to write each column as a linear combination of the standard basis vectors e1, . . . , en.

(iv.) The ith column of the transformed matrix
(
e1 · · · en

)
corresponds to the ith entry of the

Smith Normal Form of xI −A and so to the ith cyclic factor k[x]/(pi(x)) of V. By hypothesis

that k is algebraically closed, we have that pi(x) = (x − αi1)
ei1 · · · (x − αik)

eik , hence we

have that k[x]/(pi(x)) ∼= ⊕kj=1k[x]/((x − αij)
eij ). Consequently, the ith column vector of the

transformed matrix corresponds to some k[x]-module generators of V. If the ith column of

the transformed matrix is 0, then pi(x) = 1 (and vice-versa), so the cyclic factor k[x]/(pi(x))

vanishes. If the degree of pi(x) is one, then the cyclic factor of V corresponding to k[x]/(pi(x))

has only one generator, and it is the ith column vector. If the degree of pi(x) is di ≥ 2, then the

cyclic factor of V corresponding to k[x]/(pi(x)) ∼= ⊕kj=1k[x]/((x−αij)
eij ) has many generators.

Explicitly, they are the column vectors (T − αij)
eij−1(vi), . . . , (T − αij)(vi), vi for each j.

(v.) The columns of the change-of-basis matrix P correspond to the generators of the cyclic factors

found in step (iv.). Explicitly, if the degree of pi(x) is 1, then the ith column of the matrix P

is the generator of the ith cyclic factor of V. If there is more than one generator, then write the

columns in left-to-right order according to the vectors (T − αij)
eij−1(vi), . . . , (T − αij)(vi), vi.

Example 3, Cont’d. Recall that the matrix of T with respect to B = (1, x, x2, x3) is given by

A =


1 0 2 0

0 1 0 6

0 0 1 0

0 0 0 1

.
Further, we found that (x− 1)2 and (x− 1)2 are the elementary divisors of A so that

JCF(A) = J(x−1)2 ⊕ J(x−1)2 =

(
1 1

0 1

)
⊕
(

1 1

0 1

)
=


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

.
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We employed the following row operations in succession to obtain SNF(xI − A).

(1.) 1
2
(x− 1)R1 +R3 7→ R3

(2.) 1
6
(x− 1)R2 +R4 7→ R4

Consequently, we must transform the 4× 4 identity matrix accordingly.

(
e1 e2 e3 e4

) 1
2
(x−1)C3−C1 7→C1−−−−−−−−−−−→

(
1
2
(x− 1) · e3 − e1 e2 e3 e4

)
1
6
(x−1)C4−C2 7→C2−−−−−−−−−−−→

(
1
2
(x− 1) · e3 − e1

1
6
(x− 1) · e4 − e2 e3 e4

)
By definition, we have that f(x) · v = f(A)v. Consequently, we find that

1

2
(x− 1) · e3 − e1 =

1

2
(A− I)e3 − e1 =

1

2
Ae3 −

1

2
e3 − e1 = 0 and

1

6
(x− 1) · e4 − e2 =

1

6
(A− I)e4 − e2 =

1

6
Ae4 −

1

6
e4 − e2 = 0.

We conclude that the transformed matrix from above is
(
0 0 e3 e4

)
, hence our k[x]-module

generators for V are (x− 1)2 and (x− 1)2. Consequently, the columns of the matrix P from left to

right are (A− I)e3, e3, (A− I)e4, and e4. Explicitly, we find the following.

P =


2 0 0 0

0 0 6 0

0 1 0 0

0 0 0 1


Using WolframAlpha (for example), one can verify that P−1AP = JCF(A).
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